

CMSC 201 – Computer Science I for Majors Page 1

CMSC 201 Fall 2015
Lab 04 – Conditionals

Assignment: Lab 04 – Conditionals
Due Date: During discussion, September 21st through September 24th
Value: 1% of final grade

Part 1: Logic

Mastery of logic is essential to understanding conditional statements. It is
used in pretty much any program that you will ever write. Comparisons are
the heart of logical statements. When we write programs we often want to
compare variables and/or raw data, testing to see if that comparison holds
true or false. Then, we alter the way our program operates depending on the
result of that comparison.

We can make those comparisons using any of the following relational
operators, which compare two variables and/or raw data:

 < (less than)

 > (greater than)

 <= (less than or equal to)

 >= (greater than or equal to)

 == (equal to)

 != (not equal to)

For example:

num = 500 # Set the value of num

num < 1000 # This evaluates to True

1456 >= num # This evaluates to True

300 != 300 # This evaluates to False

"hello" == "goodbye" # This evaluates to False

Notice how you can mix variables and raw data and still make valid
comparisons. There are a few more operators, but we will learn about them
later in the course.

CMSC 201 – Computer Science I for Majors Page 2

You can also chain two comparison statements together using:

 and

o Both comparisons must be True for this to evaluate to True

 or

o At least one comparison must be True for this to evaluate to True

For example:
num = 500

(500 <= num) and (num <= 1000) # True

("hello" == "hello") and ("dog" == "cat") # False

num > 487 or num <= 342 # True

"hello" == "hello" or "dog" == "cat" # True

You do not have to use parentheses around a comparison statement, but it
can have the benefit of making your code clearer and easier to read.

A third logical operator available to you is called not. This can operate on

one logical statement, and it flips the truth value of that statement. So, a
logical statement that is True will be flipped to False, and a logical

statement that is False will be flipped to True.

For example:

isDog = True

not isDog # False

(4 > 5) # False

not (4 > 5) # True

5 > 4 # True

not (5 > 4) # False

not ("dog" == "cat") # True

CMSC 201 – Computer Science I for Majors Page 3

Part 2: Conditional Statements

Being able to make comparisons is only the first part of conditional
statements. We also need a structure to execute different code based on the
value of a comparison. There are three such structures available: “if”,

“if-else”, and “if-elif-else”. These structures combine with one or

more logical statements to form a conditional statement.

A basic “if” statement looks like this:

if num >= 0:

 print("The number", num, "is positive.")

The print statement is only executed if the value of the variable num is larger

than 0. Whatever is “inside” the if statement (meaning one indentation

level in) will be executed if the logical statement used evaluates to True.

What if you want something different to happen if the logical statement is not
True? To do this, just use an “else” statement right after an “if” like so:

if num >= 0:

 print("The number", num, "is positive.")

else:

 print("The number", num, "is negative.")

What if there are several related logical statements you need to test? Simply
use an “elif” in sequence with an “if.”

Important: The very first logical statement that evaluates to True will have

its associated code executed, and everything else will be skipped over.
Also, you must have an “if” statement before you use any “elif”

statements or an “else” statement.

if num > 0:

 print("The number", num, "is positive.")

elif num == 0:

 print("The number is zero.")

else:

 print("The number", num, "is negative.")

CMSC 201 – Computer Science I for Majors Page 4

Part 3A: How cold is it outside?

This is the first of two programs that you will write for this lab.
See Part 3C for instructions on creating this program.

To practice using if statements, we are going to make a program where

the user enters the temperature in Fahrenheit, and the program prints out a
description of the weather for them.

Ask the user to input the temperature and store it to a variable. (Don't forget
to cast it to an int!)

Using if statements, check the value of the input and print these sentences to
the screen:

 If the number is less than 25, print: "It's freezing outside."

 If the number is between 25 and 49, print: "It's a bit chilly, remember to
bundle up."

 If the number is between 50 and 79, print: "The weather is wonderful!"

 If the number is between 80 and 100, print: "It's pretty hot outside."

 Otherwise, print: "It is way too hot."

With input 10, the output should looks something like this:

bash-4.1$ python temperature.py

Please enter a temperature in Fahrenheit: 10

It's freezing outside.

CMSC 201 – Computer Science I for Majors Page 5

Part 3B: Pets

This is the second of two programs you will write for this lab.
See Part 3C for instructions on creating this program.

Next we will practice comparing strings. First, we will request an input from
the user. If the input is "dog" or "cat" exactly, we want to tell the user that it is
a pet.

Using if statements, check if the input says "dog" or "cat" in lowercase.

 If the input is "dog" or "cat" print: "This is a pet."

 Otherwise, print: "This is not a pet."

(Python is case-sensitive, so "cat" is not the same as "Cat" or "CAT" to it.)
Hint: Don’t forget that the Boolean operators "and" and "or" exist!

With input "frog", the output should looks something like this:

bash-4.1$ python pets.py

Please enter the animal you have: frog

This is not a pet.

CMSC 201 – Computer Science I for Majors Page 6

Part 3C: Writing the programs

After logging into GL, navigate to the Labs folder inside your 201 folder.

Create a folder there called lab4, and go inside the newly created lab4

directory.

linux2[1]% cd 201

linux2[2]% cd Labs

linux2[3]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs

linux2[4]% mkdir lab4

linux2[5]% cd lab4

linux2[6]% pwd

/afs/umbc.edu/users/k/k/k38/home/201/Labs/lab4

linux2[7]% █

Now you are going to create two python files, one for each part of this
assignment.

To open the first file for editing, type
 emacs temperature.py &

and hit enter. (The ampersand at the end of the line is important – without it,
your terminal will “freeze” until you close the emacs window. Do not include
the ampersand if you are not on a lab computer.)

The first thing you should do in your new file is create and fill out the
comment header block at the top of your file. Here is a template:

File: temperature.py

Author: YOUR NAME

Date: TODAY'S DATE

Section: YOUR SECTION NUMBER

E-mail: USERNAME@umbc.edu

Description: YOUR DESCRIPTION GOES HERE AND HERE

YOUR DESCRIPTION CONTINUED SOME MORE

CMSC 201 – Computer Science I for Majors Page 7

Once you’ve completed the comment header block, you can write the code
for the program described in Part 3A.

Once you are done with temperature.py, follow the same instructions to
create a file called pets.py, in which you will code the program described in
Part 3B. (Don’t forget the comment header block!)

To check your programs, first enable Python 3, then run and test each of
them with the python command:

linux2[7]% /usr/bin/scl enable python33 bash

bash-4.1$ python temperature.py

Please enter a temperature: 40

It's a bit chilly, remember to bundle up.

bash-4.1$ python pets.py

Please enter the animal you have: dog

This is a pet.

bash-4.1$

CMSC 201 – Computer Science I for Majors Page 8

Part 4: Completing Your Lab

Since this is an in-person lab, you do not need to use the submit command

to complete your lab. Instead, raise your hand to let your TA know that you
are finished.

They will come over and check your work – they may ask you to run your
program for them, and they may also want to see your code. Once they’ve
checked your work, they’ll give you a score for the lab, and you are free to
leave.

IMPORTANT: If you leave the lab without the TA checking
your work, you will receive a zero for this week’s lab. Make
sure you have been given a grade before you leave!

